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A method of determining the dimensions of a minimum -weight anode
radiator of a five-element thermionic generator for certain cases of
variation of the cross-sectional area of the radiator is described.

The anode radiator considered is a system of cones
with apex angle 7/2 fitted on single disk-shaped therm-
ionic elements mounted on five faces of a cube—a
solar energy receiver (Fig. 1). The initial informa-
tion required for the determination of the dimensions
of a radiator of minimum weight is the law of varia-
tion of the cross-sectional area of the radiator, the
amount of heat removed from the anode, the tempera-
ture of the anode, and the dimensions of the anode.
The following cases of variation of the cross-sectional
area of the radiator are considered:

The cross-sectional area increases linearly from
the base of the cone to the periphery, so that the
thickness of the cone wall remains constant,

The cross-sectional area of the cone is constant
along the generatrix.

The cross-sectional area decreases linearly by
40% from the base of the cone to the periphery,

The cross-sectional area decreases linearly by
80% from the base of the cone to the periphery.

In the case of a cone the temperature distribution
over its surface will be axisymmetric. Hence, the
heat balance equation for an element of the cone will
have the form

dr,
X

d (AFx ) =11, 2(5 T — Gino),

where gy is the radiant flux density from the surface
of the cone on the element considered. We transform
the heat balance equation, using the ratios

¢ = Fx/FO, 1F == II‘\/HU, @ = TA/TOY t = )C/L.

Fig. 1. Diagram of radiator.

After transformation we obtain

QM%Q =CYO (1 — qpp)- w

In this equation the conductivity parameter is
C=¢eo T3LAMo/AFy, (2)
and the relative radiant flux density is

- o
Finc = Ginc/o 1
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Fig. 2. Plots of Quht Copt (A), kopt (B), and
Zmin (C) against degree of intensification of
heat removal q: 1) cross-sectional area in-
creases linearly from base of radiator to per-
iphery so that wall thickness remains constant
(@ = 1 + kt); 2) cross-sectional area of cone
is constant along generatrix (¢ = const); 3)
cross-sectional area decreases linearly by
40% from base of radiator to periphery (¢ =

= 1 — 0.4t); 4) cross-sectional area decreases
linearly by 80% from base of radiator to peri-

phery (¢ = 1 — 0.8t).

We write the boundary conditions for Eq. (1), ne-
glecting heat emission from the end of the cone

® =1 when =0,

d®/dt =0 when =1, (3)
Function ¢ depends on the adopted law of variation
of the cross-sectional area of the radiator. As in-
dicated above, we consider various @

o=1-+kt, ¢=const
p=1—04f ¢=1-08¢, {4)
where
k = Lgsin (nt/4)/ro.
For a cone

Y =14k (5)
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Principal Results of Calculations

Numercial values for ¢ equal to

Parameters 1kt | const | 1—0.4¢° 1—0.8¢
)’a.r.N/kW; 15.3 9.61 1 §.63 7.65
hgs mm 2.64 3.61 ' 4.0 4.56

|
L, cm 10.6 11.6 ‘ 11.6 11.6

The radiant flux density depends on the position of by the square of the left side of Eq. (7), and the

the irradiated element of area along the generatrix of denominator by the square of the right side. After
the cone and the temperature distribution over its multiplication we obtain
surface. The density of the incident radiant flux is (Qrerm/Tlo)? «
determined from the known integral relations for Yar = *re‘l—:";—ro-g— =T
radiant heat transfer between bodies in a transparent , re'o'lo  Q C.
medium [1, 2] Using q and IIj we transform this expression
Gine =11, O(0)]. (6) vax—g® gt (13)

To solve Eq. (2) in conjunction with Eqs. (4)=(6) r4To - gc
we must have two additional conditions. These con- We put
ditions are embodied in the formulation of the prob~ /Qa C 7

Q, = /L.

lem and are: The radiator must remove a specified
amount of heat Qpen, and must be of minimum weight.

i 3) sh ifi ight of thi
We write the first condition in the form Expression (13) shows that the specific weight of this

cone will be a minimum when Z is a minimum, We

Q= 0 TSI, LQ. N can then write the condition imposed by the require-
In this equation the efficiency of the cone is ment of minimum weight for the anode radiator
— 1 _ Z == Zmin. (14)
=01 —gq
¢ J ( Fin) &- ®) From the obtained conditions (11) and (14) we can
We denote by q the degree of intensification of solve equation (2) in conjunction with (4)-(6) and
heat removal, equal to the ratio of the heat which obtain the values of k, Q, and C, corresponding to
must be removed from the anode to the heat which the lightest anode radiator for the particular case of

variation of cross-sectional area of the cone. We
denote these values by kopt, Qopts and Copt. The
§=Qremn E6 Tim 2. 9 length of the generatrix of such a cone and its wall
thickness are calculated from the formulas

the anode surface can emit,

We will assume that the outer surface of the cones

does not take part in heat removal, and hence Lopt= rokopt /sin (n/4),
» ‘ HO = 2n ro. (10) hoopt: r_;i 0 T?) — q (15)
We transform equality (7), using the relations (4), 4 Qoptcopt
(9), and (10). We obtain the first additional condition he = hy /(1 + Rt}
kQ = gsin (n/4)/2. (11) The results of the numerical solution of Eq. (2) on

a digital computer are shown in Fig. 2. As an ex~
ample, we will take the c_letermination of radiators
of optimum weight for the following initial data:

We consider the condition imposed by the minimum
weight requirement. For this purpose we write the
expression for the specific weight v5_y of the radiator

in the form anode diameter 50 mm, anode temperature 600° C,
heat removed at anode surface 290 kW/m?, radiator
ag = Gax _ 0 Fo 1 "o (12) made of copper, and surface emissivity 0.9.
Qrem M, e75 Q We determine the degree of intensification of heat
where removal
1 :
o= |gpdt. g =928
b
To determine Fy/II; we turn to equality (2) _ Using the graphs (Fig. 2) we determine Zp,jp,
Q'zopt, Copt» and kopt. From formulas (13), and (15)
Fo/Tly = ea TRL*/C 1. we calculate v, r, min, hagpt 20d Lopt (see table),
We substitute F/Ily in Eq. (12). We now multiply the Profiling of the. cone wall can greatly reduce the

numerator on the right side of the obtained expression weight of the anode radiator, since replacement of a
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cone with constant wall thickness by a cone with con-
stant cross-sectional area leads to a reduction of the
weight of the radiator by a factor of 1.5, other con-
ditions being equal.

Replacement of a cone with constant cross-sectional
area by a cone with linearly decreasing area leads to
a reduction of the weight of the radiator by not more
than 20%. .

The specific weight of the anode radiator, other
conditions being equal, is directly proportional to the
square of the anode diameter.

NOTATION

T—temperature; F—cross-sectional area; Il—radiating perimeter;
x—coordinate along generatrix of cone; L—length of generatrix of
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cone; A—thermal conductivity of radiator material; e—ernissivity of
surface; 0—Stefan-Boltzmann constant; h—thickness of cone wall;
ry—anode Tadius; p—density of radiator material.
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